×

PyTorch教程18.3之高斯过程推理

消耗积分:0 | 格式:pdf | 大小:0.43 MB | 2023-06-05

李慧

分享资料个

在本节中,我们将展示如何使用我们在上一节中介绍的 GP 先验执行后验推理和进行预测。我们将从回归开始,我们可以在其中以封闭形式执行推理。这是一个“简而言之 GP”部分,可在实践中快速启动和运行高斯过程。我们将从头开始编写所有基本操作的代码,然后介绍 GPyTorch,这将使使用最先进的高斯过程以及与深度神经网络的集成更加方便。我们将在下一节中深入探讨这些更高级的主题。在该部分中,我们还将考虑需要近似推理的设置——分类、点过程或任何非高斯似然。

18.3.1。回归的后验推理

观察模型与我们想要学习的功能相关联, f(x), 根据我们的观察y(x), 都由一些输入索引x. 在分类上,x可以是图像的像素,并且y可能是关联的类标签。在回归中, y通常表示连续输出,例如地表温度、海平面、CO2浓度等

在回归中,我们通常假设输出是由潜在的无噪声函数给出的f(x)加上 iid 高斯噪声 ϵ(x):

(18.3.1)y(x)=f(x)+ϵ(x),

ϵ(x)∼N(0,σ2). y=y(X)=(y(x1),…,y(xn))⊤是我们训练观察的向量,并且 f=(f(x1),…,f(xn))⊤是潜在无噪声函数值的向量,在训练输入中查询 X=x1,…,xn.

我们假设f(x)∼GP(m,k),这意味着任何函数值的集合f具有联合多元高斯分布,均值向量 μi=m(xi)和协方差矩阵 Kij=k(xi,xj). RBF核 k(xi,xj)=a2exp⁡(−12ℓ2||xi−xj||2) 将是协方差函数的标准选择。为了符号简单起见,我们将假设均值函数m(x)=0; 我们的推导可以在以后很容易地推广。

假设我们想对一组输入进行预测

(18.3.2)X∗=x∗1,x∗2,…,x∗m.

那么我们想要找到x2p(f∗|y,X). 在回归设置中,我们可以在找到联合分布后,使用高斯恒等式方便地找到这个分布f∗=f(X∗)y.

如果我们在训练输入处评估等式(18.3.1)X, 我们有 y=f+ϵ


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !