×

基于间距的降维方法_间距判别投影

消耗积分:1 | 格式:rar | 大小:0.96 MB | 2017-12-03

分享资料个

  针对全局降维方法判别信息不足,局部降维方法对邻域关系的判定存在缺陷的问题,提出一种新的基于间距的降维方法——间距判别投影(MDP)。首先,根据类的中心均值的异类近邻关系定义描述类边缘的边界向量;在这个基础上,MDP重新定义类间离散度矩阵,同时,使用全局的方法构造类内离散度矩阵;然后,MDP借鉴判别分析思想建立衡量类间距的准则,并通过类间距最大化增强样本在投影空间中的可分性。对MDP在人脸表情数据库JAFFE和Extended Cohn-Kanade上进行表情识别实验,并且跟传统的降维方法主成分分析(PCA)、最大间距准则(MMC)和边界Fisher分析(MFA)进行对比,实验结果表明,所提算法能够有效提取更具区分性的低维特征,比其他几种方法分类精度更高。
 

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !