×

基于测试点覆盖和离散粒子群优化算法

消耗积分:2 | 格式:rar | 大小:1.07 MB | 2017-12-07

分享资料个

  测试用例优先排序技术能够有效提高回归测试效率,是软件测试的热点研究课题之一。针对基于需求的测试用例优先排序方法可操作性差的问题,提出了一种改进的基于测试点覆盖和离散粒子群优化算法的求解方法( TCP-DPSO)。首先,把影响排序的各种因素分为测试收益型因素和测试成本型因素两大类,通过加权平均的方式进行归一化,得到基于需求的通用测试平均收益率评价指标;然后,利用交换子和基本交换序列定义粒子的位置和速度,借鉴遗传算法( GA)变异策略引入变异算子,采用时变惯性权重调整粒子的探索能力和开发能力,促进可持续进化和逼近优化目标。实验结果表明,TCP-DPSO在最优解质量上与遗传算法相当,大幅优于随机测试,在最优解成功率和平均求解时间上优于遗传算法,具有更好的算法稳定性。

基于测试点覆盖和离散粒子群优化算法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !