在密集人群场景下,针对现有异常检测算法在实时性和适用性方面的不足,提出了一种基于光流特征和卡尔曼滤波的实时检测方法。该方法首先提取图像的全局光流强度作为运动特征;然后对全局光流值进行卡尔曼滤波,并对残差进行分析;假设残差在正常状态下服从高斯分布,利用假设检验加以验证;运用最大似然(ML)估计得到残差的概率分布;在一定置信度下,确定正常状态的可信区间和异常状态的判定公式,并以此判断异常事件是否发生。实验结果表明,该方法对尺寸为320×240的视频,平均检测时间低至0.023 s/frame,且准确率可达95%以上。因而,该方法在保证较高检测率的同时,还具有良好的实时性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !