针对目前的电影推荐算法中,传统的矩阵分解算法对于用户的离散型评分数据集的数据利用率不高的问题,提出基于二项分布的矩阵分解算法的模型,在假定用户的评分数据是服从二项分布的前提下,利用最大后验估计学习得出损失函数,将用户的兴趣度作为影响因子,加入项目之间的邻域影响,其后利用随机梯度下降法针对问题求解。通过在MovieLens数据集上与传统的矩阵分解算法的对比实验,结果表明,提出的算法可以有效的提高推荐精度,表现出良好的稳定性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !