针对短文本内容简短、特征稀疏等特点,提出一种新的融合词语类别特征和语义的短文本分类方法。该方法采用改进的特征选择方法从短文本中选择最能代表类别特征的词语构造特征词典,同时结合利用隐含狄利克雷分布LDA主题模型从背景知识中选择最优主题形成新的短文本特征,在此基础上建立分类器进行分类。采用支持向量机SVM与是近邻法k-NN分类器对搜狗语料库数据集上的搜狐新闻标题内容进行分类,实验结果表明该方法对提高短文本分类的性能是有效的。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !