×

Spark下的并行多标签最近邻算法

消耗积分:2 | 格式:rar | 大小:1.06 MB | 2017-11-22

分享资料个

  随着大数据时代的到来,大规模多标签数据挖掘方法受到广泛关注。多标签最近邻算法ML_KNN是一种简单高效、应用广泛的多标签分类方法,其分类精度在很多应用中都高于其他常见的多标签学习方法。然而随着需要处理的数据规模越来越大,传统串行ML-KNN算法已经难以满足大数据应用中时间和存储空间上的限制。结合Spark的并行机制和其基于内存的迭代计算特点,提出了一种基于Spark并行框架的ML_KNN算法SML-KNN。在Map阶段分别找到待预测样本每个分区的K近邻,随后Reduce阶段根据每个分区的近邻集合确定最终的K近邻,最后并行地对近邻的标签集合进行聚合,通过最大化后验概率准则输出待预测样本的目标标签集合。串行和并行环境下的对比实验结果表明,SML_KNN在保证分类精度的前提下性能与计算资源呈近似线性关系,提高了ML_KNN算法对大规模多标签数据的处理能力。

Spark下的并行多标签最近邻算法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !