K-modes算法中原有的分类变量间距离度量方法无法体现属性值之间差异,对此提出了一种基于朴素贝叶斯分类器中间运算结果的距离度量。该度量构建代表分类变量的特征向量并计算向量间的欧氏距离作为变量间的距离。将提出的距离度量代入K-modes聚类算法并在多个UCI公共数据集上与其他度量方法进行比较,实验结果表明该距离度量更加有效。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !