针对传统粒子群算法不适合求解离散型问题,提出一种基于汉明距离的改进粒子群算法。该算法保留了粒子群算法的基本思想和流程,并基于汉明距离为粒子定义了一种新型的速度表示。同时,为了使算法寻优能力更高、避免迭代过程陷入局部最优无法跳出,设计了2-opt和3-opt算予,结合随机贪婪规则,使求解质量更高、收敛更快。在算法后期,为了提高粒子在整体解空间中的全局搜索能力,采用一部分粒子重新生成的方式去重新探索解空间。为了验证算法的有效性,采用了众多旅行商问题(TSP)标准算例进行测试。实验结果表明,对于小规模TSP,该算法可以找到历史最优解;对于大规模TSP,如城市数在100以上的问题,也可以找到满意解,与已知最优解之间偏差度较小,通常在5%以内。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !