针对粗糙集不能较好地处理连续型属性的问题,结合粗糙集理论和粒子群算法,提出基于自适应混合禁忌搜索粒子群的连续属性离散化算法。首先,该算法通过对参数的自适应更新操作,从而避免了粒子群出现早熟的现象;然后将粒子群当代得到的全局最优粒子送入禁忌算法中进行优化,有效地提升了算法的局部探索能力;在兼顾决策表系统一致性的同时,将划分的断点初始化为一群随机粒子,通过改进后粒子群的自我迭代得到最佳的离散化划分点。实验结果表明,与其他结合粗糙集的离散化算法相比,该算法具有更高的规则分类精度和较少的离散化断点个数,对连续属性的离散化效果较好。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !