×

基于坐标下降的并行稀疏子空间聚类方法

消耗积分:1 | 格式:rar | 大小:0.86 MB | 2017-12-23

分享资料个

  随着数据规模的不断扩大,稀疏子空间聚类问题面临计算上的巨大挑战。现有稀疏予空间聚类算法如交替方向乘子法( ADMM)往往基于串行实现,难以利用多核处理器提高处理大规模聚类问题的效率。针对这个问题,提出一种基于坐标下降的并行稀疏子空间聚类方法。该方法利用稀疏子空间聚类可以建模为求解一系列的样本自稀疏表达子问题的特点,使用坐标下降方法来求解每个子问题,具有参数少、收敛快的优点;同时结合自稀疏表达子问题独立的特点,在处理器的各个核心上同时求解不同样本对应的予问题,因此可以充分利用计算机资源,减少运行时间开销。在模拟数据和运动分割数据集Hopkins-155上与常用的ADMM算法进行对比实验,结果表明该算法在多核处理器上可以显著提升运行速度且聚类精度与ADMM相当。

基于坐标下降的并行稀疏子空间聚类方法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !