为提高室内移动机器人的环境感知能力,针对其常处的结构化走廊场景的分类、Spiking神经网络(SNN)和基于SNN的新型计算模型NeuCube进行研究。SNN利用尖脉冲传递时、空信息,比传统的神经网络更适于动态、时序信息的分析,以及各种模式信息的识别和分类。此外,SNN更易于用硬件实现。在对NeuCube的基本原理、学习方法和计算步骤进行讨论的基础上,利用多超声传感信息和NeuCube对室内移动机器人常处的7种走廊场景进行识别。实验结果表明基于多超声传感信息和NeuCube的移动机器人走廊场景分类方法可以对7种走廊场景进行有效识别,该方法有助于增强移动机器人的自主性和提高其智能水平。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !