决策树技术在数据挖掘的分类领域应用极其广泛,可以从普通决策表(每行记录包含一个决策值)中挖掘有价值的信息,但是要从多值决策表(每行记录包含多个决策值)中挖掘潜在的信息则比较困难。多值决策表中每行记录包含多个决策值,多个决策属性用一个集合表示。针对已有的启发式算法,如贪心算法,由于性能不稳定的特点,该算法获得的决策树规模变化较大,本文基于动态规划的思想,提出了使决策树规模最小化的算法。该算法将多值决策表分解为多个子表,通过多值决策表的子表进行构造最小决策树,进而对多值决策表进行数据挖掘。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !