×

激光散乱点云K最近邻搜索算法

消耗积分:3 | 格式:rar | 大小:1.09 MB | 2017-12-11

分享资料个

  针对激光散乱点云的数据量大,且具有面型的特点,为降低存储器使用量,提高散乱点云的处理效率,提出了一种散乱点云K最近邻(KNN)搜索算法。首先,利用多级分块、动态链表的存储方式,只存储非空的子空间编号。对相邻子空间进行3进制编码,利用编码的对偶关系,建立相邻子空间之间的指针连接,构造出包含KNN搜索所需的各类信息的广义表,然后再搜索KNN。KNN搜索过程中,在计算被测点到候选点距离时,直接删除筛选立方体内切球之外的点,可将参入按距离排序的候选点数减少为现有算法的一半。依赖K值和不依赖K值的分块原则,均可计算不同的K邻域。实验结果表明,该算法不仅具有低的存储器使用量,而且具有较高的效率。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !