针对传统的二分类音频隐写分析方法对未知隐写方法的适应性较差的问题,提出了一种基于模糊C均值(FCM)聚类与单类支持向量机(OC-SVM)的音频隐写分析方法。在训练过程中,首先对训练音频进行特征提取,包括短时傅里叶变换( STFT)频谱的统计特征和基于音频质量测度的特征,然后对所提取的特征进行FCM聚类得到C个聚类,最后送入多个超球面的OC-SVM分类器进行训练;检测过程中,对测试音频进行特征提取,根据多个超球面OC-SVM分类器的边界对待测音频进行检测。实验结果表明,该隐写分析方法对于几种典型的音频隐写方法能够较为正确地检测,满容量嵌入时,测试音频的总体检测率达到85. 1%,与K-means聚类方法相比,所提方法的检测正确率提高了至少2%。该隐写分析方法比二分类的隐写分析方法更具有通用性,更适用于隐写方法事先未知情况下的隐写音频的检测。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !