×

基于量化信息的分布式卡尔曼滤波算法

消耗积分:1 | 格式:rar | 大小:0.75 MB | 2018-01-07

分享资料个

  针对一个无融合中心传感器网络中的状态估计问题,提出一种基于量化信息的分布式卡尔曼滤波(QDKF)算法。首先,在分布式卡尔曼滤波(DKF)中,以节点状态估计精度为加权准则,动态选取加权矩阵,使得全局估计误差的协方差最小;然后,进一步考虑了网络带宽受限制的情况,在DKF算法中加入均匀量化器,节点之间通信使用量化后的信息,以减少网络通信的带宽需求。QDKF算法仿真采用了8 bit的均匀量化器,与Metropolis加权法和最大度加权法相比,动态加权法的状态估计均方根误差分别降低了25%和27. 33%。实验结果表明,采用动态加权法的QDKF算法能提高系统的状态估计精度,减少带宽需求,适用于网络通信受限制的应用场合。
 

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !