×

基于离散量改进k-means初始聚类中心选择的算法

消耗积分:0 | 格式:rar | 大小:0.40 MB | 2017-11-20

分享资料个

  传统kmeans算法由于初始聚类中心的选择是随机的,因此会使聚类结果不稳定。针对这个问题,提出一种基于离散量改进k-means初始聚类中心选择的算法。算法首先将所有对象作为一个大类,然后不断从对象数目最多的聚类中选择离散量最大与最小的两个对象作为初始聚类中心,再根据最近距离将这个大聚类中的其他对象划分到与之最近的初始聚类中,直到聚类个数等于指定的足值。最后将这是个聚类作为初始聚类应用到k -means算法中。将提出的算法与传统k-means算法、最大最小距离聚类算法应用到多个数据集进行实验。实验结果表明,改进后的k-means算法选取的初始聚类中心唯一,聚类过程的迭代次数也减少了,聚类结果稳定且准确率较高。

 

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !