×

基于Spark框架与聚类优化的高效KNN分类算法

消耗积分:1 | 格式:rar | 大小:0.91 MB | 2017-12-08

分享资料个

  针对K-最近邻(KNN)分类算法时间复杂度与训练样本数量成正比而导致的计算量大的问题以及当前大数据背景下面临的传统架构处理速度慢的问题,提出了一种基于Spark框架与聚类优化的高效KNN分类算法。该算法首先利用引入收缩因子的优化K-medoids聚类算法对训练集进行两次裁剪;然后在分类过程中迭代K值获得分类结果,并在计算过程中结合Spark计算框架对数据进行分区迭代实现并行化。实验结果表明,在不同数据集中传统K最近邻算法、基于K-medoids的K-最近邻算法所耗费时间是所提Spark框架下的K-最近邻算法的3.92 - 31. 90倍,所提算法具有较高的计算效率,相较于Hadoop平台有较好的加速比,可有效地对大数据进行分类处理。

基于Spark框架与聚类优化的高效KNN分类算法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !