×

一种改进的粒子群和K均值混合聚类算法

消耗积分:2 | 格式:rar | 大小:221 | 2010-02-09

131594

分享资料个

该文针对K 均值聚类算法存在的缺点,提出一种改进的粒子群优化(PSO)和K 均值混合聚类算法。该算法在运行过程中通过引入小概率随机变异操作增强种群的多样性,提高了混合聚类算法全局搜索能力,并根据群体适应度方差来确定K 均值算法操作时机,增强算法局部精确搜索能力的同时缩短了收敛时间。将此算法与K 均值聚类算法、基于PSO 聚类算法和基于传统的粒子群K 均值聚类算法进行比较,数据实验证明,该算法有较好的全局收敛性,不仅能有效地克服其他算法易陷入局部极小值的缺点,而且全局收敛能力和收敛速度都有显著提高。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !