×

基于子空间样本选择的最近凸包分类器

消耗积分:5 | 格式:rar | 大小:209 | 2009-04-20

分享资料个

最近邻凸包分类器需要求解测试样本到训练集凸包距离的凸二次规划问题,对于训练集规模较大的情况,有必要在分类之前进行适当的样本选择。为此该文提出基于子空间样本选择的最近凸包分类方法。该方法首先采用子空间样本选择算法对训练集样本进行筛选,然后将各类选出的样本作为最近邻分类器的新的训练集。子空间样本选择方法的原理是在一类训练样本集内,迭代选择距离已选样本张成子空间最远的样本。在MIT-CBCL人脸识别数据库的training-synthetic子库的实验中,该方法只需5.6%的训练样本即可取得100%的识别率,并且执行时间较未经选样的最近邻凸包分类器也大为减少。
关键词:模式识别;人脸识别;样本选择;最近邻凸包;子空间样本选择

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !