空间聚类是空间数据挖掘和知识发现领域的主要研究方向之一,但点目标空间分布密度的不均匀、分布形状的多样化,以及“多桥”链接问题的存在,使得基于距离和密度的聚类算法不能高效且有效地识别聚集性高的点目标。提出了基于空间邻近的点目标聚类方法,通过Voronoi建模识别点目标间的空间邻近关系,并以Voronoi势力范围来定义相似度准则,最终构建树结构以实现点目标的聚集模式识别。实验将所提算法与K-means、具有噪声的基于密度的聚类( DBSCAN)算法进行比较分析,结果表明算法能够发现密度不均且任意形状分布的点目标集群,同时准确划分“桥”链接的簇,适用于空间点目标异质分布下的聚集模式识别。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !