×

一种新的面向复杂网络大数据的重叠社区检测算法

消耗积分:1 | 格式:rar | 大小:2.12 MB | 2018-01-03

分享资料个

  提出一种新的面向复杂网络大数据的重叠社区检测算法DOC(detecting overlapping commumties over complex network big data),时间复杂度为O(nlog2(n》,算法基于模块度聚类和图计算思想,应用新的节点和边的更新方法,利用平衡二叉树对模块度增量建立索引,基于模块度最优的思想设计一种新的重叠社区检测算法.相对于传统的重叠节点检测算法,对每个节点分析的频率大为降低,可以在较低的算法运行时间下获得较高的识别准确率.复杂网络大数据集上的算法测试结果表明:DOC算法能够有效地检测出网络重叠社区,社区识别准确率较高,在大规模LFR基准数据集上其重叠社区检测标准化互信息指标NMI最高能达到0.97,重叠节点检测指标F-score的平均值在0.91以上,且复杂网络大数据下的运行时间明显优于传统算法,
一种新的面向复杂网络大数据的重叠社区检测算法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !