×

基于K近邻多标签分类算法

消耗积分:2 | 格式:rar | 大小:0.64 MB | 2018-01-02

分享资料个

  针对K近邻多标签( ML-KNN)分类算法中未考虑标签相关性的问题,提出了一种基于标签相关性的K近邻多标签分类( CML-KNN)算法。首先,计算出标签集合中每对标签间的条件概率;其次,对于即将被预测的标签,将其与已经预测的标签间的条件概率进行排序,求出最大值;最后,将最大值跟对应标签值相乘同时结合最大化后验概率(MAP)来构造多标签分类模型,对新标签进行预测。实验结果表明,所提算法在Emotions数据集上的分类性能均优于ML-KNN、AdaboostMH、RAkEL、BPMLL这4种算法;在Yeast、Enron数据集上仅在1-2个评价指标上低于ML-KNN与RAkEL算法。由实验分析可知,该算法取得了较好的分类效果。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !